2 resultados para VENTILATION

em QSpace: Queen's University - Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclododecane (CDD) is a waxy, solid cyclic hydrocarbon (C12H24) that sublimes at room temperature and possesses strong hydrophobicity. In paper conservation CDD is used principally as a temporary fixative of water-soluble media during aqueous treatments. Hydrophobicity, ease of reversibility, low toxicity, and absence of residues are reasons often cited for its use over alternative materials although the latter two claims continue to be debated in the literature. The sublimation rate has important implications for treatment planning as well as health and safety considerations given the dearth of reliable information on its toxicity and exposure limits. This study examined how the rate of sublimation is affected by fiber type, sizing, and surface finish as well as delivery in the molten phase and as a saturated solution in low boiling petroleum ether. The effect of warming the paper prior to application was also evaluated. Sublimation was monitored using gravimetric analysis after which samples were tested for residues with gas chromatography-flame ionization detection (GC-FID) to confirm complete sublimation. Water absorbency tests were conducted to determine whether this property is fully reestablished. Results suggested that the sublimation rate of CDD is affected minimally by all of the paper characteristics and application methods examined in this study. The main factors influencing the rate appear to be the thickness and mass of the CDD over a given surface area as well as temperature and ventilation. The GC-FID results showed that most of the CDD sublimed within several days of its disappearance from the paper surface regardless of the application method. Minimal changes occurred in the water absorbency of the samples following complete sublimation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this paper is to demonstrate a technique to utilize underground mine drift profile data for estimating absolute roughness of an underground mine drift in order to implement the Darcy-Weisbach equation for mine ventilation calculations. This technique could provide mine ventilation engineers with more accurate information upon which they might base their ventilation systems designs. This paper presents preliminary work suggesting that it is possible to estimate the absolute roughness of drift-like tunnels by analyzing profile data (e.g., collected using a scanning laser rangefinder). The absolute roughness is then used to estimate the friction factor employed in the Darcy-Weisbach equation. The presented technique is based on an analysis of the spectral characteristics of profile ranges. Simulations based on real mine data are provided to illustrate the potential viability of this method. It is shown that mining drift roughness profiles appear similar to Gaussian profiles